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and accurate to serve as a convenient, although 
approximate, alternative for optical diffraction 
experiments or numerical simulations of more com- 
plicated systems with more than one scattering object 
in the unit cell and with form factors taken into 
account. 
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Abstract 

The method proposed by Chang & Tang [Acta Cryst. 
(1988), A44, 1065-1072] for quantitative determina- 
tion of phases of X-ray reflection from three-beam 
diffraction profiles is applied to an organic crystal 
of (2R, 3 R)-3-acetoxy-5,7-dihydroxy-6-methylflava- 
none, with a mosaic spread of 0.08 °. The expression 
for the kinematical diffraction intensities is modified 
according to the kinematical theory of X-ray diffrac- 
tion in the multibeam regime. Three-beam Umwegan- 
regung and Aufhellung diffraction profiles are 
analyzed. With the help of the modified intensity 
expression, the crystal symmetry imposed by the 
space group and the three-beam diffraction geometry, 
four acentric phases and fourteen centric phases of 
structure-factor triplets are determined. 

I. Introduction 

A theoretical consideration of quantitative phase 
determination using three-beam multiple diffraction 
has recently been reported (Chang & Tang, 1988). 

0108-7673/89/120870-09503.00 

Phase determination for diffractions from perfect 
crystals was also demonstrated subsequently (Tang 
& Chang, 1988). These two reports are hereafter re- 
ferred to as papers I and II in the following dis- 
cussions. In paper I, a general formalism was derived 
from the dynamical theory of X-ray diffraction. The 
first-order approximation in the iterative procedure 
for the fundamental equation of the wavefield was 
adopted for Umweganregung three-beam diffractions, 
where the multiple diffracted intensity is greater than 
the two-beam intensity background. Boundary condi- 
tions were considered for plate-like crystals. For Auf- 
hellung three-beam diffractions, where the multiple 
diffraction intensity is lower than the two-beam back- 
ground, a second-order approximation was proposed 
to deduce the expressions for diffraction intensities. 
In paper II, the experiments for plate-like perfect 
crystals of GaAs demonstrated the possibility of 
determining quantitatively the phases of acentric 
reflections. 

In mosaic crystals, lattice perfection is not guaran- 
teed. According to Zachariasen (1945), diffractions 

© 1989 International Union of Crystallography 



S.-L. CHANG,  M.-T. HUANG,  M.-T. TANG AND C.-H. LEE 871 

from mosaic crystals have the magnitude of the par- 
ameter A much less than unity. The parameter A is 
defined as 

A = reXTlFo/(  v', 1/2^ 1/2~ 
• ro r o  J (1) 

where re and A are the classical radius of the electron 
and the wavelength of the X-rays used, respectively. 
V is the volume of the unit cell and ~/o and To are 
the direction cosines of the incident beam 0 and the 
diffracted beam G with respect to the inward normal 
to the crystal surface. Fo is the structure factor of the 
G reflection in two-beam cases. In multibeam cases, 
Fo stands for the effective structure factor 
(Juretschke, 1982; Hoier & Marthinsen, 1983). T is 
the crystal thickness. The smallness of A, i.e. A ~ 1, 
implies that the coherent dynamical interaction, 
which carries phase information, is relatively weak. 
On the other hand, extinction, mainly secondary 
extinction, affects considerably the kinematical 
diffraction intensity, while irregular crystal shape 
imposes complicated boundary conditions for 
dynamical excitation. All of these introduce difficul- 
ties in delineating the dynamical intensity profile from 
the intensity measurements. It is the purpose of this 
paper to demonstrate how to combine the three-beam 
kinematical theory with the dynamical theory so as 
to separate the contribution of the dynamical diffrac- 
tion from the kinematical diffraction and con- 
sequently to bring out phase information from the 
weak dynamical diffraction intensities for mosaic 
crystals. 

In the literature, experimental phase determination 
using X-ray multiple diffraction techniques for 
mosaic crystals has been reported by Post (1977), 
Jagodzinski (1980), Chang (1982), Han & Chang 
(1983), Gong & Post (1983), Shen & Colella (1988), 
Mo, Hauback & Thorkildsen (1988), Hfimmer, 
Weckert & Bondza (1989) and many others. Detailed 
references on this subject matter can be found in the 
review article of Chang (1987). 

II. Theoret ical  considerations 

Consider a three-beam (0, G, L) diffraction in which 
0 is the incident diffraction and G and L are the 
primary and the secondary reflections, respectively. 
G - L  is the coupling between G and L. Recall the 
recurrent relation, equation (9) of paper I, of the 
wavefield amplitude Do of the G reflection: 

Do = A o x o K o  x Ko 

where 

x {Do + AL(X O-L/XO)[XLKL X (KL X Do) 

+ XL-oKL X (KL X Do)]}, (2) 

Ao = 1/[(k 2 -  K S ) +  K2Xo] (3) 

AL = 1/[(k 2 -  K2L)+ K~Xo]. (4) 

The quantity XO-L/47r is the electric susceptibility of 

the G - L  reflection, which is proportional to the 
structure factor F o - t :  

XO_L= F F o _ L = - ( % A 2 / T r V ) F o _ L .  (5) 

k and K are the moduli of the wavevectors in vacuum 
and inside the crystal, respectively. 

According to the theorem of reciprocity of optics, 
it is known that the interchange of the L and G - L  
reflections leads to no difference in the wavefield 
amplitude D. In other words, the two three-beam 
cases, (0, G, L) and (0, G, G -  L), are equivalent 
(Pinsker, 1977; Chang 1984). However, in the 
approximation for iteration, the Do of (2) violates 
this theorem of reciprocity because of the presence 
of the last term in (2). In paper I, we have employed 
the first-order approximation, where the last term of 
(2) was dropped, so that the reciprocity is maintained. 
The relative intensity distribution of the primary 
reflection G, after the convolution with the crystal 
mosaic distribution and the instrumental broadening, 
can be expressed as a function of the azimuthal angle 
of q~ of rotation around the reciprocal-lattice vector 
g of the G reflection (Chang & Tang, 1988): 

I b = [ I o ( 3 ) - - I o ( 2 ) ] / I o ( 2 ) = I D + I K ,  (6) 

where lo(2) and lo(3) are the diffracted intensities 
of the G reflection at the two-beam and the three- 
beam positions, respectively. The dynamical intensity 
ID and the kinematical intensity IK are defined as 

ID=2Pa,Q[2(A~o)COS3--rlTsinS] (7) 

IK = a2 rlTpe/ rh (8) 
where 

P = IrlkL~Q(IFo-LI IFLI/IFol) (9) 

Q= 1/[(A~)2+(~T/2)2] '/2 (10) 

W = kl sin a sin/3o cos 0o (11) 

"r/T = r/i + r/B + r/M (12) 

~ , =  k21xol/w. (13) 

al and a 2 are the polarization factors defined as 

al = (Bo+ B5 cos 20o)p2 (14) 

a2 = ( B~ + B~ + B~ + B~)p2 (15) 

where 

Bo = 1 - ( I /k)  2 sin 2 a sin 2/30 

B 3 = ( l / k )  sin a sin/3o[(l/k) sin a cos fl0 sin 0o 

+ ( I / k )  cos a cos 0 o - s i n  20o] 

B 4 = ( I / k ) 2 ( c o s  a cos 0o 

- sin a cos/30 sin 0o) sin a sin/30 

B5 = cos 20o - B3B4/[(I/k) sin a sin/30] 2 

P2 = 1/(1 + cos 2 20o). 
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6 is the phase of the structure-factor triplet 
FGFLFo-L. r/r is the total experimental width at half 
maxima, rh, r/s and r/M are the intrinsic diffraction 
width, the average instrumental broadening and the 
crystal mosaic spread, respectively. A~ is the angular 
deviation from the exact three-beam diffraction posi- 
tion. L is the Lorentz factor defined as k~ W. l is the 
modulus of the reciprocal-lattice vector ! of the L re- 
flection. 0G and a are the Bragg angle of the G reflec- 
tion and the angle between the vectors g and 1./30 is 
the angle between 1± and the plane of incidence, 
where !~ is the vector component of 1 normal to g. 
For a plate-like crystal, r/~ can be written as [see 
equation (35) of paper I] 

n, = k l L ~ l ( T t / ~ o ) l x o l ,  (16) 

where 70 and TL are the direction cosines. For a crystal 
of arbitrary shape, we introduce a factor Ct in r/, to 
take care of the boundary conditions for wavevectors: 

C , n , =  C, klL~Xo]. (17) 

The approximation for the wavefield amplitudes 
employs an iteration procedure. This approach is 
the same as the second-order Bethe approxima- 
tion (H0ier & Marthinsen, 1983; Juretschke, 1982; 
Hiimmer & Billy, 1986) and the Born approximation 
(Shen, 1986), except that the resonance function At 
of (4) has been introduced to describe the intensity 
at the peak position. Actually, (6) can also be derived 
from the Bethe approximation and the Born approxi- 
mation. On the other hand, IK given in (8) has exactly 
the same form as that derived from the kinematical 
theory for Umweganregung diffraction for a weak 
primary reflection (Moon & Shull, 1964). Physically, 
this procedure, valid up to first-order approximation, 
is not in a strict manner consistent with the 'simul- 
taneous' nature of multiple diffraction. To consider 
the simultaneous occurrence of diffractions and the 
kinematical diffractions from mosaic crystals, the 
kinematical intensity l r  is replaced by the expression 
derived from the power-transfer equation of the kine- 
matical theory (Moon & Shull, 1964). With a modified 
coefficient keeping the dimension of IK the same as 
that given in (8), the kinematical intensity takes the 
form 

IK, r~--(nr/n,)k2F2L2FQ2R (18a) 

with 

R =[a21F~_L2[FLI2-a31F~ 21Ft12 

_ a  4 FG 2 FG_L2]/  FG 2, (18b) 

where the polarization factors a3 and a4 are defined as 

a3 = [COS 2 20G + COS 2 20t 

+ (COS 20G-t--COS 20G COS 20t)2]p2 (19a) 

an = [COS 2 20G + COS 2 20G-t  

+ (cos 201_-cos 20G COS 20G_t)2]p2. (19b) 

0t_ and 0G-L are the Bragg angles of the L and G - L 
reflections, respectively. Equation (18a) reduces to 
(8) as FG approaches zero. Both (18a) and (8) are 
valid for weak reflections with qlo< 1 and /zlo< 1, 
where q is the reflectivity defined as 

qG =(r2eA3/V2)[FG]2(1 +cos 2 20)/(2 sin 20G). (20) 

/z and l0 are the linear absorption coefficient and the 
X-ray path length, respectively. 

In practice, the experimental kinematical intensity 
IK is different from the theoretical IK, r given in (18) 
due to (i) the error of the resonance function AL 
introduced in the iterative procedure, and (ii) the 
extinctions. For an irregularly shaped crystal, the 
intensity ratios, IK / IK, r at A~p = 0, are almost constant 
for the three-beam diffractions involving approxi- 
mately the same kinematical intensities, because the 
effects of the extinctions and the errors in the theoreti- 
cal approximations are almost the same. Under this 
condition, we could assume that 

IK = Colr,,r (21) 

for a set of three-beam diffractions which have similar 
IK, r values. If very weak three-beam diffractions are 
considered (i. e. qlo < 1,/zlo < 1 ), both the primary and 
secondary extinctions are small. The IK, r given in 
(18a) is suited for calculating the kinematical 
intensities. 

To determine the scale factor Co, we consider the 
ratio of IK, r and the experimental intensity of I~ ,  at 
the peak position, A~ 0, i.e. I p -  ' = ~lc(A~p = 0), as 

Ip/IK, T(0)=[  lo(O)+ IK (0)]/IK, r(O) 

= +4P(0)a~ sin tS/IK, r(0) + Co, (22) 

where the relations (6), (7) and (8) have been used. 
The plus and minus signs correspond to the 
Umweganregung and the Aufhellung diffractions, 
respectively. If a three-beam diffraction with ~ = 0 or 
180 °, the Co can be determined via the Ip/lr~r(O). 
Thus, the determined Co can be used to calculate the 
IK from (21) for the other reflections which have 
similar IK.r values. 

From (22), we notice that if 3 > 0  and a~>0,  
lp/lr,,T(O) < Co for Umweg and Ip/IK, r(O) > Co for 
Aufhellung. If t5 < 0  and a~ >0 ,  the situations are 
reversed for Umweg and Aufhellung. 

It should be noted that the A~0 in the first term of 
(7) involves the sign of LF, which is defined as (Chang 
& Tang, 1988) 

S(LF) = S + SG/,, (23) 

where S± is positive for the ' IN '  position ~+ at which 
the reciprocal-lattice point L is entering the Ewald 
sphere; S± is negative for the 'OUT' position ~_ at 
which the reciprocal-lattice point L is leaving the 
Ewald sphere. SGt, is the sign of 12 - 1. g (Shen, 1986). 
That is, the sign of cos ~ to be determined via (7) 
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depends on S(Lv), while the sign of sin 6 is indepen- 
dent of S(L~). 

With the determined Co factor, the measured r/r, 
the calculated rh, a2, a3, a4, and the structure-factor 
amplitudes deduced from two-beam intensity 
measurements, the kinematical diffraction profile 
I r (A~)  can be calculated as 

where 

I~ (At,) = CaLP(A¢,) (24) 

ca = Cor= k ~ L~ ( ,77-/ n,) R (25) 

~(A~0) = Q2. (26) 

is a Lorentz ian.  The az imutha l  pos i t ion q~+ or  q~_ 
at the exact three-beam point, A~o = 0, is the center 
of the Lorentzian. ~o+ can be calculated according to 
the diffraction geometry (Cole, Chambers & Duun, 
1962; Chang & Tang, 1988). The dynamical diffrac- 
tion profile Io(A~p) is then equal to Io(A¢) = 
I'c(A~)--IK(A~). The phase angle 6 for a~LF>O 
can be determined according to the relations (Chang 
& Tang, 1988) 

cos 6 - s i n  6 =  I+/(2Pa~QW)Ia~=n~/2 (27a) 

-cos  6 - s i n  6 = I_/(2Pa~QW)I,~=n~/~" (27b) 

where 

l±= Io(A~o = +'qr/2 ). (28) 

If alLv <0,  to the 6 determined from (27) should be 
added -90  ° . The details about adjusting the value of 
6 according to the experimental and geometrical 
parameters are given in §§ IV and V. For later dis- 
cussion, the phase angle calculated from (27) is 
denoted as the nominal phase 6". 

III. Experimental 

An organic crystal of (2R, 3R)-3-acetoxy-5,7-dihy- 
droxy-6-methylflavanone, C18H1606 (Fang, Chang & 
Cheng, 1987), was used for the experiments. The 
crystal is about 0 .4mm in diameter. The crystal 
belongs to the monoclinic system, space group I121, 
with four ( Z = 4 )  molecules in the unit cell. The 
cell dimensions are a=14.4881,  b=8.0342, c=  
14.3406 ~ and fl = 110.76 ° (Cheng, Cheng, Chang & 
Wang, 1989). The mosaic spread of the crystal 
measured from rocking curves is about 0.08 ° . The 
two-beam Bragg diffraction intensities were collected 
as usual by using an Enraf-Nonius CAD-4 diffrac- 
tometer with Mo Ka radiation. The moduli of the 
structure factors were deduced from the measured 
intensities. Those used for calculating IK.r are listed 
in Table 1. The crystal was then mounted on a Huber 
400 semi-automatic goniometer to perform multiple 
diffraction experiments. An Elliott GX-21 rotating- 
anode X-ray generator was used. The details of the 

Table 1. Structure factors of C18H1606 for Mo Ka 
radiation 

hkl IFI hkl IFI 
000 680 202 62 
002 35 204 61 
004 65 204 52 
013 117 211 35 
015 30 ~li 35 
i01 96 213 53 
10i 96 222 80 
101 4 303 49 
103 27 303 103 

_ _  

103 265 312 102 
105 5 312 102 
112 138 312 102 
114 88 402 18 
i23 47 4ii 29 
200 14 514 36 

experimental set-up can be found in paper II. The 
beam divergence is about 0-03 °. Fig. 1 shows the 101 
multiple diffraction pattern obtained with Cu Ka 
(h =1.541838A) radiation. 101 is the primary G 
reflection. Multiple-diffraction Umweg peaks are 
indexed with the Miller indices of the secondary 
reflections L. Several indices sharing the same peak 
indicate the overlapping of several reflections includ- 
ing high-order N-beam (N  > 3) diffractions. (Because 
of the relatively crowded peak distribution, not all of 
the peaks are labelled with their secondary reflections 
L in Fig. 1.) The origin, ~p --0, of the azimuthal rota- 
tion angle ~p corresponds to the position at which the 
[010] direction coincides with the plane of incidence 
of the 101 reflection. The arrow shows the running 
direction of the paper chart. Fig. 2 shows part of the 
303 multiple diffraction pattern for Cu Ko~ radiation. 
All the multiple diffractions are of Aufhellung type. 
The uneven two-beam 303, as well as 101, reflection 
background is due to the boundary effect of the 
irregularly shaped crystal. The symmetry about ~p --0 
of the two-beam intensity distribution visible in 
Figs. 1 and 2 indicates that the crystal shape is some- 
what symmetric about the [010] direction. 

o 

( 101 ) CuK~ 

o 

i o 

~" 2'0" ~ '-- 0" -2b" -~0 

Fig. 1. Multiple diffraction (Umweg) pattern of 101 C18H1606 for 
Cu Ka radiation (h = 1.541838 A). 
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Step scan, I'o versus Aq~, was carried out for each 
of the unoverlapped three-beam diffractions for 101 
and 303 ~o scans. The error in counting statistics for 
intensity measurements was kept less than 1%. Some 
of the step-scanned profiles IS(Aq~) are shown, as 
examples, in Figs. 4 and 5 for Umweg and Aufhellung, 
respectively. The peak positions q~±, defined as Aq~ = 
0, for each three-beam diffraction are determined 
according to equation (25) of paper I and the relation 
q~,- = q~o +/30, where ~Oo is the initial azimuthal position 
of the reciprocal-lattice point L with respect to the 
plane of incidence of the primary G reflection. The 
peak intensities Ip = I~(Aq~ = 0) were recorded and 
the peak widths at half maxima were measured. 

IV. Data analysis and phase determination 

The scale factor Co, as discussed in § II, can be 
determined from the lp / IK.r(0)  values of weak three- 
beam centrosymmetric diffractions via (22). For space 
group I121, hkl with k = 0 are centric reflections. The 
corresponding three-beam cases, hOl/1 - h,0,1 - I and 
h O l / 3 - h , 0 , 3 -  l) are also centric, where the indices 
before and after the slashes represent L / G  - L. Table 
2 lists the Ir,.r(0) and l p  values for the weakest 
reflections of the 101 and 303 scans. The two-beam 
intensities of 101 and 303 calculated according to (20) 
are also given. The 1~ ) - I~  ) values, which are propor- 
tional to Ir,.r(O)I(~ ~ are about 3 x 10 -8 for the reflec- 
tions of the 101 scan and 4 x 10 -6 for the 303 scan. 
Since I~  ) -  1~ ) are very weak and qlo < 1 and/zlo ~ 10 
(cm -~) x 0.04 (cm) = 0.40, it is justifiable to employ 
(18a) for the calculation of Ir~r(0) for the reflections 
listed in Table 2. From Table 2 for the 101 scan, 30], 
204, ]12 and i23 reflections have/mr(O) values rang- 
ing from 0.07 to 0.09. The centric three-beam reflec- 
tions 30] and 204 were used to determine the scale 
factor Co. As shown in Fig. (3a), the averaged Co is 
6.87 with 8.28 and 5.60 as the upper and lower 
bounds, respectively. Since 30] and 204 are symmetry- 
related equivalent reflections, i .e.  30]/ff.04 with 

(303) CuK# 

14"10" 210 ° ~ :~0 ° - 210" - 410" 

Fig. 2. Multiple diffraction (Aufllellung) pattern of  303 CI8HI60 6 
for Cu Ka radiation. 

Table 2. The IK.T(0) and Ip values for weak three-beam 
diffractions 

L IK.T(O) Ip 
(a) G = 1 0 1 [ l ~ ) ~ q ~ 4 x 1 0  -7 ] 

303 0.070 0.553 
204 0.075 0.436 
312 0.072 0.480 
i23 0.092 0.115 

(b) G = 3 0 3  [ l ~ 8 x  10 -6 ] 
514 0-0022 0.021 
105 0.0033 0.019 
202 0-0052 0.024 _ _  

312 0"0061 0"005 

respect to 204/30],  they are supposed to have the 
same Ip/Ir~T(O) values. However, owing to the 
experimental errors, for example, the crystal boun- 
dary effects, the possible inhomogeneous intensity 
distribution of the incident beam and the crystal 
misalignment, 30] and 204 have slightly different 
values in Ip/lmT(O ). This difference is considered to 
be the principal error in Co. The error in counting 
statistics is indicated as an error bar in Fig. 3. The 

8 

\ 

4 

I01 

828 

6.87 

5 60 

~ (303) 

~(312) 
(204)-- __ _ 

~; (723) 

i 

004 008 
(a) 

012 

8 
t-, 

\ 
D.., 

3O3 

~ (514) 

6.15 

5 19 ~ (105) 

4.40 
. .~om 

(3T#) 
i 

0 0 . 0 0 4  0 0 0 8  

I K,T (0) 

(b) 

Fig. 3. Scaling for (a) 101 Umweg and (b) 303 Aufl~ellung. 
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mechanical backlash of the q~ scan was checked to 
be very small. It has very little effect on the peak 
positions. The Co value obtained was then used to 
calculate the I r  for 312 and ]23 reflections. 

For the 303 scan, the centric three-beam reflections 
105 and 202 were used for the scaling (see Fig. 3b). 
The scale factor Co is equal to 5.19 with 6.15 and 
4.40 as the upper and lower__ bounds. With this Co 
value, the IK of 514 and 312 reflections are calculated 
via (24). 

The scaling shown in Figs. 3(a) and (b) also pro- 
vides information about the enantiomorph (for 
example, see Ladd & Palmer, 1980) for acentric reflec- 
tions. For Umweg (Fig. 3a),  123/222 has Ip/IK, T(O) 
values less than the average Co value. This implies 
that the sign of sin 6" is positive. For Aufhellung 
(Fig. 3b), the Ie_/_IK, T(O) of 514/211 is greater than 
while that of 312/015 is less than Co, i.e. the sign 
S ( s i n 6 * ) > 0  for 514/211 and S ( s i n 6 * ) < 0  for 
312/015. 

The kinematical diffraction intensities IK (a~o) are 
constructed according to (24) for acentric reflections. 
Figs. 4 and 5 show the constructed IK, the experi- 
mental profiles I ~  and the dynamical profiles Io( = 
I '~- - Ir )  for the 101 and 303 scans, respectively. The 
running direction of the paper chart is also indicated. 
The determined 6's from 11, via (27) are listed in 
Table 3 as 6*'s, together with the signs, S±, Sot_, 
SL(C), S ( c o s  3 ) ,  S (sin 3) and s(al), where 

S (cos 3)= S(al)S(LF)SL(C) 

=S(a,)S+SoLSL(C) (29) 

S (sin 6)= S(al)S (sin 6"). (30) 

S(al)  is the sign of the polarization factor al. SL(C) 
is the sign defined from the asymmetry of the tails of 
the diffraction intensity profiles (Chang, 1982). The 
relation (30) is established based on (7) and (22). 
The 6*'s are the nominal phases which need to be 

0.4 

- -0.4 

-0.1 

,,,,,' ,,,,, ~ (123) 

/ 
"--.. [ 

\ \ / 
\ liD \ ! 
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k..y 
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. ,....~ 
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(Zl2) , , , / ~  

\ 
~(T14)\\ .."''"/ [G /].l ' ~ < . ~ "  

N. 

\ / I D  N .,... / 

-o.1 o o.1 
9~ (Deg.) -,. 

(b) 

Fig. 4. Intensity_profiles o_f I ~ , /K  and I o for the 101 Umweg: 
(a) 123/222 and (b) 312/411 (the peak 114 is nearby). 
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Fig. 5. Intensity profiles of I'~, 11< and Io for the 303 AuJhellung: 
(a) 514/211 (the peak 206 is nearby) and (b) 312/015. 
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Table 3. Experimentally determined phases for C18H1606 (A = 1-541838 ~ )  

L / G - L  S(al) S± S o L  St_(C) S ( c o s  6 )  6 * ( ° )  S ( s i n  6 )  6 E ( ° )  

( a )  101 Umweg ( G =  101)  

26 + 
181 

123 /222  + 
312/4T1 + 
101/002 + 
103/004 + 
002]101 + 
004 /103  + 

- - 

303]204  + 
204 /303  + 

( b )  3 0 3  Auj'hellung ( G = 3 0 3 )  

514/211 + 
_ _  

312/015  + 
200/103  + 
105]202 + 
101 /402  + 
204]101 + 
402/T01 + 
101]204 + 
202/105  + 
1031200 + 

+ + + + 26 
+ + - - 181 
+ + + + 0 
+ + + + 0 
+ + + + 0 
+ + + + 0 
- + - - 180 
- + - - 1 8 0  

+ + - -  _ 

+ + - _ 

_ _ + + 

- -  + + - 

- + + - 

- + - + 

+ + - _ 
+ + + + 
+ .+ -- _ 
+ - _ + 

136 + 136 
- 7 9  - - 1 6 9  

6T(°) 

23 
171 

0 
0 
0 
0 

180 
180 

132 
- 1 4 5  

0 
180 
180 

0 
180 

0 
180 

0 

corrected according to the signs of S (cos 6) and 
S (sin 8). The corrected phases are listed as 6E. The 
theoretical phases 6T, calculated from the known 
atomic positions of the crystal, are also given. 

The phases 6 of those centric diffractions are also 
determined according to the signs of cos 8, S (cos 8). 

V. Discussion and concluding remarks 

The main error in the determination of acentric phases 
comes from the errors in determining the Co value. 
From (21), the error ACo/Co is proportional to the 
sum o f ~  Air.r~ Ir..r and ~ Alp~ Iv. The former is due 
mainly to the theoretical approximation and the 
extinctions and the latter results from the inaccuracy 
in the intensity measurements. Because of the crystal 
cell dimensions and the wavelength used, overlapping 
of multiple diffraction profiles is unavoidable. This 
overlapping certainly affects the intensity profiles and 
their positions. On the other hand, the irregular crystal 
boundaries cause complex dynamical excitation and 
the primary extinction which not only change the 
intensity distribution but also shift the peak position 
away from ~o±. Since the errors associated with AIK, r 
and AIp are not directly attainable, we can estimate 
the error ACo/Co only from the intensity variation of 
the two symmetry-related equivalent reflections and 
the counting statistics (see Fig. 3). The estimated 
ACo/Co is about ±20% for the Umweg and ±18% 
for the Aufhellung. The corresponding errors in the 
nominal phase 6" determined via (27) are within ±5 ° 
for Lorentzian and Gaussian kinematical profiles for 
T23/227., 514/21T and 312/015 (Table 4). The errors 
in 6" for 312/4T1 are about ±25 °. This is because the 
Ip/IK.T(O) value is so close to the Co value. Slight 

variation across Co may change the sign of 8", which 
will certainly cause a large error in 6". From Fig. 3(a), 
312 lies in between 303 and 204. This indicates that 
312 is practically a centric reflection. 

Since we dealt with the weak diffractions from 
mosaic crystals, the effects of the phases on the 
intensity profiles are not obvious. To doubly check 
the determined phases, we use the asymmetry of the 
tails of the profile I~  to determine the sign of cos 6 
via (29) (Chang, 1982; Chang & Valladares, 1985). 
The experimental phase 6~ is then adjusted according 
to S (cos 6) and S (sin 6). For example, in Fig. 5(b), 
the nominal phase 8" determined from the Io curve 
is -79 °. This contradicts the fact that S (cos 6 ) < 0  
and S (sin 6) < 0, i.e. 6 must be in the third quadrant. 
The experimental phase 6E is therefore corrected to 
- 7 9 - 9 0 ° = - 1 6 9  ° . From Table3, the maximum 
difference between 6E and 6r is about 25 °. 

It should be noted that the nominal phase 6" is 
determined directly from the line profile I ~ obtained 
experimentally. The factors such as S(a~), S , ,  SoL, 
S (cos 8) and S (sin 8) have not been considered in 
calculating 8". The final experimental phase should 
therefore follow the relations given in (29) and (30) 
and should be adjusted to fit in the correct quadrant. 

In deriving (18), we have adopted the expression 
for the diffracted intensity from the kinematical 
theory (Moon & Shull, 1964). Although the 
expression was originally derived for low extinction 
and weak reflections, its form, satisfying the theorem 
of reciprocity, seems to be quite general. A similar 
expression for the kinematical intensity has also been 
derived from the Takagi-Taupin equation for a 
parallelepiped crystal (Thorkildsen, 1987). The 
difference between the two is in the consideration of 
the crystal boundaries. In the present case, the extinc- 
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Table 4. The determined nominal phases 6" and the 
errors +/18" corresponding to the lower and upper 

bounds o f  Co 

8"(+a8", -as*)(o) 
L Lorentzian Gaussian 
(a) G = 101 
123 26 (+3, -3) 40 (+3, -3) 
312 181 (+22,-25) 159 (+26,-21) 
(b) G = 303 
5i4 136 (+2, -1) 138 (+2, -2) __ 
312 -79 (+5, -4) -83 (+4, -3) 

tion effects on the diffracted intensity are relatively 
small because the reflections involved are very weak. 
However, the crystal boundary seems to affect the 
intensity considerably. This can be seen directly from 
the comparison of the intensity backgrounds of the 
101 and 303 q~ scans. 

The scaling factor Co, defined in (21) to match the 
experimental and the theoretical kinematical 
intensities, has values greater than unity. The devi- 
ation of Co from unity is attributed to the theoretical 
approximation, extinctions and crystal boundary 
effects. Since extinction is small and (18) is valid for 
the present situation, the crystal boundary becomes 
the dominant effect. In paper II, plate-like crystals 
were used for the multiple-diffraction experiments. 
In that case, the crystal boundary is well defined. The 
corresponding peak intensity is proportional to the 
ratio of the direction cosines, 30/YL. Co is about 0.91 
for Cu K a l  (see paper II). When TL approaches zero, 
the peak intensity Ip increases. It is therefore not 
surprising to have Co greater than unity when an 
irregularly shaped crystal is used. 

The negative dynamical intensities Io, shown in 
Figs. 4 and 5, represent the intensities which are taken 
away from the kinematical intensities IK of the 
primary reflections and transferred to the secondary 
reflections via dynamical interaction. For Io > 0, the 
primary reflection gains intensity from the secondary 
reflection. This can be understood from the theoretical 
derivation and the calculated intensities given in 
paper I. 

In paper I, we had adopted the term 'kinematical '  
for the intensity IK which is independent of the reflec- 
tion phases. This intensity is considered as the inco- 
herent intensity. According to Kato (1980), by no 
means does the incoherent intensity result solely from 
the incoherent waves. Instead, coherent waves can 
also contribute to the incoherent intensity. Therefore, 
the 'kinematical '  intensity IK is attributed to both 
coherent and incoherent waves inside, the crystal. 
Moreover, it is worth noting that, in the case of 
Umweganregung, the IK derived from the funda- 
mental equation of the wavefield, (2), has the same 
form as that from the kinematical theory. 

,~Fhe strength of the dynamical interaction which 
conveys the phase information in the multiply diffrac- 
ted intensity distribution resulting from the coherent 
waves in the crystal depends, as stated in (1), on the 
parameter A. In order to increase the dynamical effect, 
strong reflections, long wavelengths and large crystals 
are ideal for the experiments. However, in practice, 
for irregularly shaped small crystals, compromised 
experimental conditions should be considered to 
reduce to minima the absorption, extinction and crys- 
tal boundary effects. 

In conclusion, we have demonstrated that by 
modifying the expression for the kinematical intensity 
IK with that derived from the kinematical theory and 
with the aid of crystal symmetry imposed by the space 
group, quantitative phase determination from weak 
three-beam diffraction can be achieved for mosaic 
crystals, with relatively large errors compared with 
that for perfect crystals. Further investigation is sug- 
gested to study the effects of crystal boundary on the 
intensity profiles of three-beam diffraction from non- 
centrosymmetric crystals so that improved precision 
in determining the phases is attainable. 

The authors thank Y. Wang for providing the 
crystal sample and the two-beam diffraction data. The 
financial support from the National Science Council 
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